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Double-Delta Wing

C.-H. Hsu* and P.-M. Hartwich?
Vigyan Research Associates, Inc., Hampton, Virginia

and

C. H. Liug
NASA Langley Research Center, Hampton, Virginia

An implicit finite-difference scheme is used to compute the three-dimensional incompressible laminar vortical
flow around a sharp-edged double-delta wing with an aspect ratio of 2.06. By adding a time derivative of the
pressure to the continuity equation, the unsteady incompressible Navier-Stokes equations can be integrated like a
conventional parabolic time-dependent system of equations. The fhux-difference split scheme combines approxi-
mate factorization in crossflow planes with a symmetric planar Gauss-Seidel relaxation in the remaining spatial
direction. Up to second-order spatial accuracy is achieved by using an upwind differencing similar to a fotal
variation diminishing scheme. Computations are performed at Re = 1.4 X 10° and o = 20 deg. Numerical results
indicate that the first-order-accurate scheme is unable to capture the wing vortex, while the second-order-accurate
scheme has successfully simulated the vortical interaction between the strake and wing vortices.

Introduction

O obtain valuable visual information, diagnostic water

tunnels, towing tanks, and low-speed wind tunnels have
been extensively used inn aerodynamic design and reshaping.
Organized vortical flows are successfully employed in gener-
ating and controlling useful nonlinear lift for many modern
aircraft. These vortices are usually associated with slender
delta-like wings and/or strake-wing configurations. -Wings
with kinked leading edges such as double-delta wings or strake
wings are often designed to obtain a favorable interaction
between the strake leading-edge vortex and the main-wing
flow. The strong and stable vortices originating from the
highly swept strake can delay large-scale boundary-layer flow
separation on the upper surface of the main wing or stabilize
the leading-edge vortices emanating from the main wing,
Low-speed wind-tunnel investigations'? on double-delta wings
indicate that at low angles of attack (a) two primary vortices
are shed leeward on each side of the wing, originating from
the strake and wing leading edges, and remain distinguishable
over the entire wing. At medium angles of attack, they wrap
around each other and merge into one stable vortex over the
rear part of the wing. At high angles of aftack, they merge
right after the kink and are no longer separate. At very high
angles of attack, the large-scale vortex breakdown occurs over
the wing and the induced vortical lift diminishes. Numerical
sithulations for those low-speed phenomena have motivated
the current development of a fast and reliable computational
method for three-dimensional incompressible flow.

Various three-dimensional Navier-Stokes codes have been
mainly developed for compressible flow. Applying these codes
to simulations of incompressible flow is not efficient and is
generally not recommended. There are two methods using
primitive variables for solvinig incompressible flows. The

Presented as Paper 87-0206 at the AIAA 25th Aerospace Sciernices
Meeting, Reno, NV, Jan. 12-15, 1987; received Jan. 21, 1987; revision
received Oct. 2, 1987. This paper is declaréd a work of the U.S.
Government and is not subject to copyright protection in the United
States. ‘

*Research Scientist. Senior Mémber AIAA.

tResearch Scientist. Member AIAA.

ISenior Research Scientist. Senior Member AIAA.

method of solving Poisson’s equation for pressure was devel-
oped by Harlow and Welch.> This procedure normally re-
quires a relaxation schéme iterating on pressure at each time
step until the divergence-free condition is satisfied. On the
othier hand, Chorin* proposed to use artificial compressibility
in solving the continuity equation. By adding a time derivative
of the pressure to the continuity equation, the unsteady in-
compressible Navier-Stokes equations can be integrated like a
conventional parabolic time-dependent system of equations.
This results in a system of equations that can be efficiently
solved with an implicit scheme.>~°

Most of the fiowfield is dominated by convection for high-
Reynolds number flows. Furthermore, the Navier-Stokes
equations reduce to hyperbolic Euler equations as the
Reynolds number approaches infinity. This suggests that the
ideas for solving the Euler equations can be extended to
the Navier-Stokes equations. Upwind schemes for solving the
Euler equations have gained considerable popularity. Upwind
differencing alleviates the necessity to add and tune the
numerical dissipation for numerical stability and accuracy as
in the schemes with central differencing.> In addition, one-
sided differencing makes the coefficient matrices diagonally
dominant. These features lead to the development of several
upwind schemes’~® for solving the unsteady incompressible
Navier-Stokes equations. .

The purpose of this study is to apply one of the new
implicit upwind schemes®® to compute the flow about a
sharp-edged double-delta wing with an aspect ratio of 2.06
and a maximum thickness of 0.03. This configuration (Fig. 1)
has a leading-edge kink at midchord and has 76- and 60-deg
sweep for the leading edges of the strake and main wing,
respectively. Cross sections are triangular ahead of and
trapezoidal behind the 40% chord station. The upper surface
of the wing is flat, and all leading edges and the trailing edge
are chamfered on the windward side of the wing (about 17-deg
angle normal to the edge). This geometry was tested in a
low-speed wind tunnel® at Re=1.4 X 10° and M, =01. A
laser-sheet visualization technique was employed to ‘investi-
gate the streamwise developmient of vortical flow above the
double-delta wing at an angle of attack of 20 deg. Above the
strake the flow is similar to the flow above the forward half of
a slender delta wing. The flow is dominated by two near-coni-
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cal leading-edge vortices. The shear layers that emanate from
the strake leading edges roll up into the so-called strake
vortices. Downstream of the leading-edge kink an additional
vortex, the wing vortex, is formed above each side of the main
wing. Since these two vortices have the same sense of rotation,
they swirl around each other due to mutual induction. The
wing vortex is a double-branched vortex because one shear
layer is connected to the wing leading edge and the other one
to the strake vortex. The wing vortex is continuously fed with
vorticity from the wing leading edge as well as from the shear
layer between wing and strake vortices. As a consequence, the
vortical strength of wing vortex increases downstream. At
some distance downstream of the kink the vorticity fed into
the strake vortex will gradually diminish. Consequently, the
vortical strength of the strake vortex will become constant or
even reduce because vorticity is swallowed by the stronger
wing vortex. Downstream of the 85% chord station, the two
vortices completely merge into one single vortex.

In the next section, the governing equations are presented.
Then a brief outline of the numerical method is followed.
Thereafter, computed results are presented and compared
with experimental data.

Governing Equations

By adding p,/B to the continuity equation, the time-depen-
dent, three-dimensional, incompressible Navier-Stokes equa-
tions in conservation-law form for a body-fitted coordinate
system are formulated as follows:

[Q/J),+[E-E,);+[F-F/]:+[G-G,],=0

()

with
E-E, $AT 80 LT [E-E/ ]
F-F, |\ =&/ &/ &/ [F-Flc
G-G, /I 0/ /T || [F-Gyle
where

Q=[p,u,v,w]T
EC=[,8u,u2+p,uv,uw]T
FC=[Bv,uv,vz+p,vw]T

G = [Bw, uw, ow, w? +p]T

Z
4

s Y
section A-A

d/c = 0.03
. 17

section B-B

Fig. 1 Sharp-edged double-delta wing with an aspect ratio of 2.06.
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and -
Ey, -=Re 1[O,2ux,uy+vx, uz+wx]T

- T
F, c=Re 1[0,Ux+uy,2vy,vz-+-wy]

- T
Gy c=Re 1[0,wx—+-uz,wy-l-vz,2wZ]

Assuming a time-invariant grid, the Jacobian of the coordi-
nate transformation J is defined as

J=det[ 3(¢,£,1)/3(x, y,2)] ©)

The preceding equations are written in dimensionless form.
The Cartesian coordinates x, y, and z are nondimensional-
ized with the root-chord length ¢ of the wing. The Cartesian
velocities u, v, and w are normalized with the freestream
velocity V. The time ¢ is nondimensionalized with ¢/7V_, and
the normalized pressure is defined as p=(P—P,)/p, V2.
The density does not require any normalization since it is
simply a constant. For a constant viscosity g, the Reynolds
number is defined as Re=p,V_c/n.

The artificial time derivative of the pressure couples the
continuity equation with the momentum equations. The
parameter B is a measure for the amount of artificial com-
pressibility. For very large B, the modified governing equa-
tions resemble the Navier-Stokes equations for truly incom-
pressible flow. However, as 8 — oo, the governing equations
become very stiff. On the other hand, if 8 is chosen to be too
small, the upstream influence of a local pressure disturbance is
nearly lost, i.e., the system of equations becomes subsonically
incompatible. For steady-state calculations, 8 is set to unity
as in Refs. 7-12. When a steady state is approached ( p, = 0),
the effect of the pseudocompressibility diminishes, resulting in
an incompressible solution.

Numerical Algorithm

Control-Volume Approach

Each grid point is defined as the centroid of a control
volume. Its six bounding surfaces are located at the six nearest
half-grid points. The dependent variables are specified at each
centroid and the numerical fluxes are formulated at its six
bounding surfaces. At control-volume interfaces, u,v,w, p,
and the differences of u, v, and w occurring in the cross-
derivative terms of the viscous fluxes and the metric quantities
are obtained by taking simple arithmetic averages of their
values at neighboring full-grid points.

To maintain a source-free differencing, the metrics are dif-
ferenced using a weighted-average procedure.®!* For example,

(fx)ijk =Jijk[(0k8jy)(oj6kz) - (Ujb‘ky)(aksjz)]i (3)

with

0,8y = [(8jy)k+1 + (sjy)k—l]/z

and & is the usual central-difference operator. This special
averaging procedure brings the present finite-difference method
close to a finite-volume approach.

Flux-Difference Splitting

Since upwind differencing simulates the wave propagation
properties of hyperbolic equations and because it does not
need artificial viscosity terms, it is applied to the inviscid
fluxes E, F, and G. For incompressible flow, these inviscid
fluxes are not homogeneous of degree one in the state vector
Q. Hence, the usual flux-vector splitting methods'*!> do not
work here. A flux-difference splitting based on Roe’s ap-
proximate Riemann solver'¢ is chosen to upwind-difference
the inviscid fluxes. To incorporate the idea of flux-difference
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splitting, the three-dimensional conservation laws are first
dimensionally split into three one-dimensional systems of
equations through the operator-split concept:

(/7] + Hy=0 4

where 0 =¢,£, 0or n and H=E, F, or G. The essential idea in
Roe’s scheme is to find approximate solutions to Eq. (4) by
constructing exact solutions to an approximate problem, i.e.,

[Q/J]r+D/A1Q=0 (5)

where 4,( ) ={( Jiv12 = ( )i—1,21/80 and I=i, j, or k. The
locally frozen matrix D of the preceding sexmdmcrete formula-
tion has the same eigenvalues as dH/3Q, if D(Q,,Q,,1) =
(8H/30)Q,, Q1) for Q,.1 — Q,. Furthermore, Eq. (5) is
conservative if D(Q,,Q,_ 1) X(@,— Q,_,)=H,— H,_,. For
compressible flow,'® the mean coefficient matrix D must be
evaluated using Roe’s specially averaged values of the ele-
ments of Q. For incompressible flow,’~12 the special averaging
reduces to an arithmetic average, e.g., Dy, =D(Q;1,) =
DI(Q;+ Q;11)/2). In the latter subsections, D=4, B, or C
in the {, £, or n directions, respectively.

The eigenvalues A, (m=1,2,3,4) of D represent the wave
speeds of the Riemann problem. By using a similarity trans-
formation, D can be split as

D=RAL=R[A*—A"]L=D*-D" (6)
where R and L are right and left eigenvectors of D with
LR =1 (I is the identity matrix). The diagonal matrix A
consists of A, as its elements and A*=[|A} + A]/2. The
detailed formulae for the eigenvalues and eigenvectors can be
found in Refs. 8 and 9. Introducing Eq. (6), a first-order
semidiscrete formulation of Eq. (5) is given by

[Q/T],+ DLy 011 Q" = Diy 8141 ,Q" =0 (7

Applying first-order, Euler backward-time differencing, Eq.
(7) is rewritten as

[I/JAt + D1+—1/2A/~1/2 - Dﬁ1/2A1+1/2] ! AQ"

= [D1_+1/2A1+1/2*D1+—1/2A1—1/2]nQn (8)

where

AQ" — Qn+1 _ Qn

Equation (8) describes the influence of a right-traveling wave
from the left and a left-traveling wave from the right on Q at
the centroid /. This simple flux-difference splitting based on
Roe’s approximate Riemann solver is used separately in each
spatial dimension. For three-dimensional conservation laws,
the overall discretization is obtained via adding up all three
independent discretizations of the flux vectors in each dimen-
sion.

High-Resolution TVD Scheme

Equation (8) gives first-order-accurate spatial differencing.
Its solution is contaminated with a considerable amount of
numerical dissipation. The spatial differencing is enhanced to
second-order accuracy by incorporating a discretization simi-
lar to a total variation diminishing (TVD) scheme. TVD
schemes are essentially nonlinear schemes. They switch be-
tween several difference stencils such that the schemes adapt
to the local solution in order to give high resolution in regions
of smooth solution while still suppressing spurious oscillations
in regions of rapid changes in gradient (e.g., contact discon-
tinuities). Here, the high-resolution scheme is based on a
recently developed implicit TVD scheme for linear systems of
one-dimensional hyperbolic conservation laws. For a linear
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system of equations, the quantities whose total variation can
be forced to diminish in time are the characteristic variables!”8
defined as
w=1g )
Substituting Eq. (9) into Eq. (8) gives
[(1/Atj) A - A;IAI+1/2] " awy
=(7\;.A/+1/2—>‘;A1~1/2)an7 (10)
Equation (10) describes four decoupled, scalar linear hyper-
bolic conservation laws and is unconditionally TVD. The

extension to a second—order TVD scheme is achieved by
rewriting Eq. (10) as follows:®

[(L/AtT) + N5y =MoLy o] " AW
= (A 10504 =00 )]} Brr oWy
(A [1+05(en — ok )] ) Ay (11)
where

% ;= max[0;2 X min( 7,7, ,;1)] (12)

n n il n
"mi,/ = (A/—l/ZWm/Al+1/2Wm) for Alil/ZWm #0

or

T, =0 for Aji1oW =0

Equation (11) with Eq. (12) comprises several difference ap-

proximations. The stencil depends on the local TVD limiter -
¢ ;. When all ¢,, equal zero, Eq. (11) gives first-order upwind

differencing. For any other combination of ¢,,, it resembles

central, one-sided or upwind biased differencing of second-

order accuracy. The extension of Eq. (11) to a nonlinear

system of conservation laws is obtained in two steps. First, the

nonlinear equivalent for Eq. (11) is formed. Then it is multi-

plied by R from left to get®

(I/Atj+ Dby, — D/_+1/2A/+1/2)n AQ”
= {R1+1/2A1+1/2[1 0.5(0, — ‘I’f)]LHl/z}n
{ RNy [T+0.5(07

A,y 0" (13)

A1+1/2Q'l -

_q)ltl)] L_i, } ’

where

O =diag( o5, o5, 05, 97),

Factorization and Relaxation

The solutions to Eq. (1) are advanced in pseudotime using
Euler-implicit time differencing and local time stepping. An
implicit scheme is chosen to avoid a restrictive time-step size
when highly refined grids are used to resolve viscous effects.
Casting the equations in delta form yields steady-state solu-
tions that are independent of the time-step size. The two-
time-level discretization of Eq. (1) can be written as

NAQ" + RES(Q") =0 (14)
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The operator RES gives the residual at time level n and
represents the discretized spatial-derivative terms of Eq. (1).
The viscous fluxes are centrally differenced in the usual
manner,"> and the inviscid fluxes are discretized by applying
the general formulation in Eq. (13). The resulting spatial
differencing is up to second-order-accurate. A hybrid ap-
proach®® for the formulation of the operator N is chosen. It
uses approximate factorization in crossflow planes (- planes)
in combination with a symmetric planar Gauss-Seidel relaxa-
tion in the { direction. The hybrid scheme with block-tridiago-
nal implicit factors is written as

n

[M+ (B++ S*)/‘~1/2Aj—1/2 - (Bi‘l' S*)j+1/2Aj+l/2]

X(M™)' [M+(CT+ T 1081

—(C+ T*)k+1/2Ak+1/2] nAQ" = —RES(Q", Q"“)
(15)

with
M=I/AIJ+(A++ R*)i71/2+(‘4_+ R*)i-*rl/Z

where R*, $*, and T* are the linearized coefficient matrices
associated with viscous shear fluxes E,,, F,, and G, respec-
tively.®® The nonlinear updating of the residual during
back and forth sweeps in the { direction is indicated by
RES(Q",0"*1) in Eq. (15).

()

TN

AN
)\

=
22
=
T
%
U

U

Fig. 2 Three-dimensional elliptic grid: a) planform view, b) crossplane
grid at 40% ¢, and c) crossplane grid at 75%c.
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Boundary and Initial Conditions

Unknown values of Q" on the boundaries are updated
explicitly and AQ" is set to zero. On the wing surface, the
no-slip condition is imposed and the normal gradient of the
pressure is assumed to vanish. Freestream conditions are
specified along the outer boundaries except for the outflow
boundary, where the values are computed from extrapolation.
Reflection conditions are applied on the symmetry plane. The
flowfield values along the branch cut in the wake are com-
puted by averaging the extrapolates of the dependent vari-
ables from above and below. The initial conditions consist of
freestream values. The values of ¢ ; along all boundaries are
set to zero.

Computed Resuits

A grid of 531,069 points is generated plane by plane by
solving a set of elliptic partial differential equations.'® The
shape of the computational domain is described by a frustum
of half-hemispherical cylinder with a radius of 2¢. As shown
in Fig. 2a, the grid extends 0.8¢ upstream of the apex (x/c =
1.0) and 1.4c¢ downstream of the trailing edge (x/c=2.0).
The C-H grid is segmented into 77 crossflow planes per-
pendicular to the longitudinal axis of the wing. In each
crossplane (Figs. 2b and 2c), there are 57 and 121 grid points
in the radial and circumferential directions, respectively. The
maximum spacing normal to the wing surface for the first grid

0742—
AC, = -0.2
{a}
Cy =06
0371 —
z/C
[}
-.0371 ’
0 037 0742 113 1484
Y/C
A0—
(b)
05—
z/c
0 —/
-0 | l [
0 .05 .10 A5 20
Y/C
1569 —
(<)
0788 —
z/c
\
0
-o785 | | | _
[} .0785 .1569 .2354 3138
Y/C

Fig. 3 Total pressure contours with first-order accuracy at a) 40%c,
b) 55%¢, and ¢) 75%c.
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line encircling the wing at the trailing edge is 2.5 X 10~ “c.
Cross sections are clustered near the apex, kink, and trailing
edge3. The minimum spacing between crossplanes is 6.25 X
107 "c.

The finite-difference solutions at Re=1.4 X 10% and a =20
deg are carried out in 32-bit word arithmetic on the CDC
CYBER 205 vector computer at NASA Ames Research Center.
The central processor unit time per grid point per iteration is
37.3 ps. The L, norm of all residuals is reduced by three
orders of magnitude within about 500 (1000) iterations for
first-order- (second-order-) accurate computations. This is
achieved with local time stepping (CFL = 10).

Computed total pressure contours at 40, 55, and 75% chord
stations are shown in Figs. 3 and 4 for first- and second-
order-accurate results, respectively; C, is the total pressure
coefficient, and its value at the farfield is 1. Both figures show
that the total pressure loss occurs mainly along the wing
surface, the leading-edge separated shear layers, and the vorti-
cal cores. Figure 3 displays computed total pressure contours
with first-order accuracy. The flow rolls up into a strong
primary strake vortex (Fig. 3a), and this vortex induces a tiny
secondary vortex. Figures 3b and 3c indicate that the sizes of
the primary and secondary vortices become larger as the flow
approaches the trailing edge. The global vortical flowfield'? is
qualitatively similar to the experimental observations.? How-
ever, the primary wing vortex is too weak to show up or

0742—

0371 |— =06

z/¢
-.0371 | l l
o 0371 0742 A113 1484
Y/C
10—

(b)

0785 +—
z/C
0
-.0788 J l | J
0 0785 1569 2354 3139

Y/C

Fig. 4 Total pressure contours with second-order accuracy at
a) 40%c, b) 55%c, and ¢) 75%c.
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merges with the primary strake vortex right at the kink
station. This implies that the first-order one-sided differences
for the inviscid fluxes have introduced too much numerical
damping and have smeared out the shedding of the wing
vortex.

Figure 4 shows computed total pressure contours with
second-order accuracy. Upstream of the kink, at 40% ¢, only
the primary strake vortex exists (Fig. 4a). Since the vorticity is
stronger due to better flow resolution, the size of vortex is
smaller and the total pressure loss is larger than those corre-
sponding values with first-order accuracy at the same chord
stations. The secondary separation induced by the adverse
pressure gradient due to the primary strake vortex is much
clearer than that with first-order accuracy. Downstream of the
kink, at 55%c, an additional vortex of the same sense of
rotation, the primary wing vortex, is clearly indicated in Fig.
4b. Further downstream, the weaker strake vortex moves
downward and outboard and the stronger wing vortex drifts
slightly upward and inboard. At 75%c¢ (Fig. 4c), the two
primary vortices almost merge into one single vortex and
induce a large secondary vortex. Lateral trajectories (locations
of local total pressure minima) of the interacting primary
vortices are plotted in Fig. 5. Numerical calculations are in
good agreement with experimental data except that the pre-
dicted location (75% c) of complete merging is upstream of the
experimental value (85%c). This discrepancy is probably
caused by the laminar/turbulent transition observed in the
experiment but is not modeled in the present computations. It
might also be attributable to the insufficient crossflow resolu-
tion near the trailing edge.

The corresponding distributions of spanwise surface pres-
sure coefficient are shown in Fig. 6, where s is the local
half-span. The solid and dotted lines represent the second-
and first-order-accurate results, respectively. Figure 6 indi-
cates that differences between first- and second-order-accurate
pressure distributions are insignificant on the lower surface of
the wing. However, on the upper surface only the second-
order-accurate results correctly reflect the process of vortical
interaction. In addition, all suction pressure peaks with sec-

0.0
Present computations (M_, = 0.0)
N\ e -Strake vortex
0.2 LY Wing or merged vortex
2
\ verhaagen‘s data (M_, = 0.1)
W\ oa Strake vortex
o.4f 1\ o Wing vortex
X/C %
0.6 | 1
0.8}
1.0
1.2 | I |
0.0 0.2 0.4 0.6

Y/C

Fig. 5 Lateral trajectories of vortical cores.
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Second-order accurate scheme
of—  m———— First—order accurate scheme

-50 I | J

0 .28 .50 75 1.00
Y/s

Fig. 6 Spanwise surface pressure distributions at a) 40%c, b) 55%c,
and ¢) 75%c.

ond-order accuracy are much higher than those with first-order
accuracy. Unfortunately, there are no experimental data avail-
able for comparison.

Conclusions
Navier-Stokes computations are obtained for a sharp-edged
double-delta wing at Re=1.4X10% and a=20 deg. The
first-order-accurate results indicate that the wing vortex is too
weak to appear because of hefty numerical dissipation. By

VORTICAL INTERACTION 447

contrast, the second-order-accurate results reveal that both the
single-branched strake vortex and the double-branched wing
vortex are well captured. Furthermore, the computed lateral
trajectories of vortical cores are predicted in good agreement
with experimental data. It is clearly demonstrated that at least
a second-order-accurate scheme is needed to simulate the
vortical interaction for a double-delta wing. Further computa-
tional efforts with greater mesh resolution must be made to
resolve fully the detailed structure of vortical flow. In ad-
dition, detailed experimental investigations must be carried
out to provide the pressure and velocity distributions so that
more quantitative comparisons between numerical results and
experimental data can be performed.
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